翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

group object : ウィキペディア英語版
group object
In category theory, a branch of mathematics, group objects are certain generalizations of groups which are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous.
==Definition==

Formally, we start with a category ''C'' with finite products (i.e. ''C'' has a terminal object 1 and any two objects of ''C'' have a product). A group object in ''C'' is an object ''G'' of ''C'' together with morphisms
*''m'' : ''G'' × ''G'' → ''G'' (thought of as the "group multiplication")
*''e'' : 1 → ''G'' (thought of as the "inclusion of the identity element")
*''inv'': ''G'' → ''G'' (thought of as the "inversion operation")
such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied
* ''m'' is associative, i.e. ''m''(''m'' × id''G'') = ''m'' (id''G'' × ''m'') as morphisms ''G'' × ''G'' × ''G'' → ''G'', and where e.g. ''m'' × id''G'' : ''G'' × ''G'' × ''G'' → ''G'' × ''G''; here we identify ''G'' × (''G'' × ''G'') in a canonical manner with (''G'' × ''G'') × ''G''.
* ''e'' is a two-sided unit of ''m'', i.e. ''m'' (id''G'' × ''e'') = ''p''1, where ''p''1 : ''G'' × 1 → ''G'' is the canonical projection, and ''m'' (''e'' × id''G'') = ''p''2, where ''p''2 : 1 × ''G'' → ''G'' is the canonical projection
* ''inv'' is a two-sided inverse for ''m'', i.e. if ''d'' : ''G'' → ''G'' × ''G'' is the diagonal map, and ''e''''G'' : ''G'' → ''G'' is the composition of the unique morphism ''G'' → 1 (also called the counit) with ''e'', then ''m'' (id''G'' × ''inv'') ''d'' = ''e''''G'' and ''m'' (''inv'' × id''G'') ''d'' = ''e''''G''.
Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of group – categories in general do not have elements to their objects.
Another way to state the above is to say G is a group object in a category C if for every object X in C, there is a group structure on the morphisms hom(X, G) from X to G such that the association of X to hom(X, G) is a (contravariant) functor from C to the category of groups.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「group object」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.